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Abstract: The problem is to calculate an approximate solution of an initial value
problem for a scalar autonomous differential equation. A generalized notion of a
nonlinear Runge-Kutta (NRK) method is defined. We show that the order of any
s-stage NRK method cannot exceed 2s - 1; hence, the family of NRK methods due to
Brent has the maximal order possible. Using this result, we derive complexity bounds |
on the problem of finding an approximate solution with error not exceeding «. We also |
f compute the order which minimizes these bounds, and show that this optimal order ?
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increases as s decreases, tending to infinity as ¢ tends to zero.
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1. Introduction

Let D be a subset of the real numbers R, and let %9 = {v : domain{v) c R + R}
be a set of functions, such that the initial value problem of finding a function
x : [0, 1] » R satistying

x(t) = vix(t) O<t<l

(1.1)

x(0) = xg
has a unique solution for every (xq, v) € wx'& (The differential equation in (1.1) is
said to be a scalar autonomouys differential equation.) We are interested in the
computational complexity of using one-step methods to generate an approximation to
(1.1) on an equidistant grid (in the sense of Stetter [73]; that is, the methods
considered give approximations x; to x(ih) by the recurrence

(1.2) Xjis] = X +helxph) (©sisn-1),
where h = n~1 is the step-size of a grid with n points, and ¢ is the increment function
(Henrici [62]) for the method. (For brevity, we will refer to "the method ¢.")

In Werschulz [76a), we discussed the complexity of solving autonomous gysiems
of differential equations; in this paper, we will consider only the case of a single scalar
autonomous equation. Clearly, the results of Werschulz t?&] hold for problems of the
form (1.1). However, in this paper we will discuss the complexity of solving (1.1) via
nonlinear Runge-Kutta methods (abbreviated, "NRK methods”). We only consider the
scalar case (1.1), since it is not known whether NRK methods exist for more general
systems,

In Section 2, we give the formal definition of "NRK method,” and show that no

NRK method using s evaluations of v ("stages”) can have order exceeding 2s - 1. Thus,




the set of s-stage methods of order 2s - 1 described in Brent [74] has maximal order
in the class of NRK methods.

In Section 3, we use the results of Brent [74] and Section 2 to find upper and

lower bounds on the complexity of finding an approximate solution whose error does
not exceed s, using a method of fixed order. These results are then used to caiculate
optimal orders which minimize these complexity bounds. We show that the optimal
order increases as ¢ decreases, tending to infinity as s tends to zero. Finally, we
compare the complexities of NRK methods, Taylor series methods, and linear Runge-
Kutta methods. We show that the best NRK methods known are asymptbtiully better
(as . tends to zero) than the best linear Runge-Kutta methods possible, but are f

asymptotically worse than the best Taylor series methods known if the cost of

evaluating the kP derivative of v is bounded for all k. ' :
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2. Maximal Order for NRK Methods

Before proceeding any further, we will review some basic notions from
Werschuiz [76b] The following notational conventions will be used. Let X be an
ordered ring; then "X*" and "X**" respectively denote the nonnegative and positive
elements of X. (This is used in the cases X = R, the real numbers, and X = Z, the
integers.) The symbol ":=" means "is defined to be." We use "I" to denote the unit
interval [0, 1]. The notations "x | a" and "x T a" are used to indicate one-sided limits,
as in Buck [65] Finally, if xy ,xp: R+ R and : RZ 4+ R are differentiable, then
for i =1, 2, we write

9 wlx (1), xo(t)
for the result of differentiating w(x;, x2) with respect to x; and then substituting
x1 = x1(t) xo = x5(1).

We next describe the model of computation to be used. We assume only that all
arithmetic operations are performed exactly in R (i.e., infinite-precision arithmetic) and
that for all v ¢ 99, we are able to compute the value of v at any point in its domain. In
addition, we must pick an error measure, so that we may measure the discrepancy
between the approximate solution produced by ¢ (via (1.2)) and the true solution. For
the sake of definiteness, we use the global error

(2.1) eglwh) = max ggicn IX(ih) - x| .

Other error measures may be used, such as the local error per step and the local
error per unit step (see Henrici [62] and Stetter [73) for definitions); this would
involve only a slight modification of the results contained in the sequel.

Finally, we will say that = {p, :p ¢ Z**} is a basic sequence of methods if

there exist functions x : R*xl - R and &,k : R* = R* such that

bl
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(2.2) egleph) = e(ph) WP forhe¢landpeZ* ,

where

(2.3) 0 < x(p) sx(ph) s xfp) < #0 forhel .

We say that ¥p has order p. This is a slight extension of the definition of order given
in Cooper and Verner [72]; the function x_introduced here is necessary and sufficient
for the "order" of a method fo be unique. (Here we introduce the convention of
attaching the subscripts "L" and “U" to quantities dealing with lower and upper bounds
(respectively) on complexity.)

We now consider a generalization of the familiar linear Runge-Kutta methods
which are found in siandard texts such as Henrici [62] A basic sequence & is said to
be a sequence of nonlinear Runge-Kutta methods ("NRK methods”) if each increment
function g, € & mey be written in the form |

(2.4) : ¢p(xi.h) = e (xgh; Koy - Kg-1) »
where

(2.5) kj - v(y,-), yj = fj(xi,h; Koy - "‘j-l) 0<jss=-1)
for suitable functions JE RXRXR} » R (0 sj<s) We say that *p has s = s(p)
stages, so that an s-stage NRK method uses s evaluations of v. Since the one-step
method ¥p defined by (2.4) and (25) is stationary (i.e., does not change from step to
step), we need only describe how x; is generated from xg.

Brent [74], [76] considered the problem of finding a simple root I of a nonlinnr-
function F : R = R, using the Brent-information (Meersman [76))

(2.6) ’lg ,'(F) = {Flxgh F/(xg), F/yy) ..., Fiyg-1)}
where xq is an initisl approximation to p, and y , .., ys.y are to be determined. Let

x; be a sufficiently good approximation of the appropriate zero of the minimal-degree
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polynomial interpolating the information ﬂB,Q(F). Then Brent [74] showed how to
choose y) , .., ¥g.1 80 that

2.7) Iy -8l = Oling - BI2%) as xp ¢ .

This aofim an iterative method of order 2s for finding p.

Let us now define a function F by setting

28) Flz) = I:ode/vm i
and note that x(h) is the zero of F. Recalling that order for iterations is defined
differently than is order for one-step methods, (2.8) shows how an s-stage NRK
method of order p may be derived from a (p + 1)h-order iterative method for zero-
finding which uses the Brent-information (2.6). Using this transformation and (2.7),
Brent [74], [76] exhibited a sequence ®) gy of "modified” Brent-Runge-Kutta methods
("BRK methods"), in which the s-stage method has order

(2.9) p=2s-1.

Furthermors, Meersman [76] proved that this order is the greatest possible in the
class of all such BRK methods. We now extend Meersman’s result to include all NRK
methods.

Theorem 2.1: No s-stage NRK method can have order greater than 2s - 1.

Proof: Let ¢ be an s-stage method with order p. We will construct (from ) an
itontive method ¢ of order q:=p + 1 for finding a simple zero { of an arbitrary
analytic function F: R - R.

The method ¢ is defined as follows. Let xo be an approximation to [ such that
F’ is nonzero between xg and . (Since F/(f) # 0, such an xq exists.) Write tg := Flxgk
without loss of generality, assume tg < 0. Now apply one step of ¢, using a step-size
of -tg, to the problem

#H) = FOaNl (tg<t<0) with xitg) = xg,

R R s
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(whose solution is the functional inverse of F, so that x(0) = F~1(0) = t) then ¢ is

given by
wixg) = xq - o elxp:-tp) -
By the definition of order for iterative methods, it is clear that ¢ has order a
1 moreover, ¢ uses the generalized Brent information (Definition 1.3.8 of Meersmen [76])
NgpsF) = {FxohF “yoh FUy b« s Filyg-1)} - '

& Suppose that yq ¥ xg; then q < 2s by Theorem 11.3.3 of Meersman [76) On the other

f hand, if yg =X, then ¥ uses the Brent-information (265 by Theorem IL2.4 of

3 Meersman [76] (also due to WoZniakowski), we have q < 2s in this case also. Thus in

| either case, we find that

R P

p+l = qs 2,
! and the desired result follows. i

Thus ®\gRK IS informationally-optimal in the class of NRK methods, in the sense
3 that each ¥p in ®\gRK Uses the minimum number of stages possible for a p"‘-ordor

NRK method.




3. Complexity Bounds for NRK Methods

In this Section, we will compute lower and upper bounds on the total number of
arithmetic operations C(p,a) required to guarantee that if ¢p‘ is a p"‘-ordor NRK
method, then

31 vG(pp,h) Ss =%
for a given p ¢ l.“' and a ¢ R**. (Here e is the base of the natural logarithms.) Since
a > 0, we have 0 < ¢ < |; clearly @ increases as s decreases, and a tends to infinity as
s tends to zero.

In the methods we consider, we may write

(3.2) Clpa) = nelp) = h™lcp)
where n is the minimal number of steps required (so that h = n! is the maximal step-
size permitted), and the cost per step c(p) is the number of arithmetic operations
required for the execution of one step of a p""-order NRK method. As in Traub and
WoZniakowski [76], we shall express the cost per step in the form

(3.3) c(P) ~ omp(v)) + d(p) .
Here '!p(v) is the information about v required to perform one step of a p“‘—ordor
NRK method Yo and we write emp(v)) for the informational cost of vp We call d(p)
the combinatory cost of ¥p: For example, Euler’s method ‘

Xis1 = % +hvix)

has informational cost

(3.4) e(v) := cost of evaluating v at one point.
The combinatory cost is two operations (i.e., one addition and one multiplication).

We now assume that the solution x of (1.1) is analytic on I. Thus Cauchy's

Integral Theorem (Ahifors [66], pg. 122) shows that there exists an M > O such that

|
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W2k s M foralitel .
Finally, we shall restrict our attention to problems which are "sufficiently ditficult,” L.e.,
for which there exists an My > 0 independent of h and p so that
(35) egleph) 2 (M WP if hel and peZ** .

(See Section 4 of Werschulz [76b].)

We will now derive a lower bound for the complexity C(p,a) via NRK methods.
Clearly, Theorem 2.1 implies that for any p“‘-order NRK method, we must have

(3.6) eMpv) 2 eV (p+1)/2,
and a linear lower bound on the combinatory cost states that

(3.7) dp) 2 a p
for some a; > 0. By (3.6) and (3.7), a lower bound on the cost per step for o is
' (3.8) c (p) = (a +e(v)/2)p + elv)/2,
which leads to

Theorem 3.1:

Cipa) 2 C(pa) = My e +ev)/2) p + e(v)/2) e®/P.
Proof: From (3.5), we see that if (3.1) holds, then
h < hpa) = M le®/P,

Using this result, (3.2), and (3.8), the theorem follows. [ |

Next, we consider upper bounds on the number of operations required. Instead
of using ®p4grx» We will use the class &gpk of "unmodified" BRK methods described in
the Appendix, where it is shown that ®gpy is order-convergent in the sense of
Werschulz [76b] That is, there is an M; > O such that

(3.9) ogleph) s My h)P ;
no such bound is known for &y grx- In addition, &) gy requires the solution of p - 1
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linear systems of equations, the ith having p - i unknowns, in order to perform e
“reorthogonalization.” So the smallest known combinatory cost for this class is about
O(p3-81) arithmetic operations; this is obtained by using Strassen’s technique for linear
systems (described in Borodin and Munro [75])). On the other hand, most of the
combinatory cost for vp in ®gpk is involved in finding the coefficients of the
polynomial p,,; (see the Appendix); once these coefficients are known, the remaining
combinatory cost is O(p In p) as p T ®. An estimate of how much work is required to
compute these coefficients is given in

Lemma 3.1: Let xg, ¥y .. » ¥ps Wos 200 ~ » 2, bE given, and let

Qx) := 2::& q; X
be the unique polynomial of degree at most r + 1 satisfying
Qlxg) = wo, Qxg) = 29, and QUy;) = z (1sisr).
If T(r) is the time required to compute qg, ... , G4, then
T(r) = OfrIn%r) asrto .

Proot: The coefficients q), 2qp, ... , (r+l)q,,; of Q’ may be computed in time

Ofr lnzr) by using a fast algorithm for computing the coefficients of the Lagrange

polynomial interpolating the points (xo, 2g), (y,2y) - » (y 2z, ); see Borodin and

Munro [75] for details. Then O(r) operations yield qy, ... , 41, and Horner's rule gives

qp with O(r) additional operations. [i

Thus there exists ay; > 0 such that

(3.10) dip) < ayp InZ(pre) .
(We write "In (p+e)", where e is the base of the natural logarithms, rather than "In p"
as a technical convenience. However, an expression of the form “In (p+y)" with 4 >0

is necessary to guarantee that d(1) > 0.) In order to simplify matters a bit, note that

Theorem A.1 of the Appendix implies that
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Although the estimate above is not exact for p > 2, it is asymptotically equal to that in
Theorem A.l. (If necessary, the sharper estimate given there may be used, but the
calculation of optimal order (see below) involves considerably more detail; moreover,
the asymptotic formulae for optimal complexity, order, and step-size are the same in
either case.) Combining (3.10) and (3.11), we see that the cost per step is bounded by

(3.12) clP) = o(v) p + ay p InZ(pre)
which leads to

Theorem 3.2:

Cip@) < Cfpa) = My [e(v) p + ay p InZ(p+e)) /P .
Proof: If we st
h = hypa) = Mu'l eo/p |

we find that (3.9) implies that (3.1) holds. Using this result, (3.2), and (3.12), the
theorem follows. [

Thus we have found bounds

(3.13) Ci(pa) s Clpa) s Cyipa)
on the number of operations required for a p"‘-order NRK method to provide an
approximate solution satisfying (3.1). We would like to compute

(3.19) C*a) := int {Clp,a):p € Z**) .

This is not possible, since we only have bounds for C(p,a), and hence cannot compute

C(p,a) exactly. However, we can pick optimal orders which minimize these bounds.

First, we prove
‘ Lemma 3.2: Define
Gu(p) := p2 c /(P) / c(p) and  Gifp) := p2 cy’(P) / cfp) .

Then for p > 0, we have G ‘(p) > 0 and Gy’(p) > 0.
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Proof: Since ¢ is a linear polynomial with a negative zero, the first part follows

immediately. Now write ¢ (p) = c;(p) c,(p), where

c1(p) = p and ca(p) = l+p|n2(p+e).

with 8 := a; / e(v) . Define

G = p2cip) [ctp)  (i=1,2) .

Clearly G;(p) > O if p > 0. Now

Go(P) = 28 pZIn(p+e) / Dxip), where Dy(p) := (p+e) f2(p),

so that

Gp(p) = 2 8p gy(p) / Dpfp)?

g,(p) = B p InZ(p+e) [In (pse) - 1]+ 2 B & In(pre) + (p + 2¢) In (pre) + p

Thus Gz'(p) >0 for p > 0. Since Gy =G; + G2 , the desired result follows. [

We now have the following
Theorem 3.3: For any a > 0, there exist p| *(a) and py;*(a) such that

a = G(p) iff p = pL‘(a) and a = Gyp) itf p = pu‘(c) ;

Moreover,

C %@ = C (p *a)a) < Ci(p,a) unless p = p @

Cu%@ = Cyfp ') < Cifpa) unless p = py*a)

Proof: Using (3.5), (3.9), and Lemma 3.2, this follows immediately from Lemma 21

of Werschulz [76a) B

From (3.13), (3.14), and the above Theorem, we have bounds

(3.15) C M@ s CHa) s Cf@) .

We call p *(a) (respectively, p*(a)) the lower (upper) oplimal order, C*@)

(respectively, C(,*(a)) the lower {upper) optimal complexity, and

i e
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(3.16) h *@a) = h (p*(a)a) (respectively, hi*(a) = hifp*(«)a)
the lower (upper) optimal step-size. We now examine how these quantities behave as
a increases.

'Theorem 3.4: p( *(a), py*(e), C *(a), and C;%(a) all increase monotonically and
tend to infinity with @. Moreover, the following asymptotic tormulae hold as tends to
infinity.

(1) p*a) ~ @ and py*@ ~ @ .

(2) C_*@) ~ M_e[a +ev)f2]a and Cifa) ~ MysyeainZa .

3) h*a) ~ M el and hyte ~ (Myer?t .

Proof: The first statement follows from Lemma 3.2 and from Theorem 2.3 ot
Werschulz [76b] Now Lemma 3.2 implies that '

G ~p and Gyp) ~p asplo .
Using this result and the fact that lim 4p0 P *(@) = lim g3 pulie) = +m,
(1.) follows. Finally, (2.) and (3.) follow from (1.), Theorem 3.1, and Theorem 32 §

So in the class of nonlinear Runge-Kutta methods, we find that

(3.17) CL*@) = Of@) s C%a) s C*@) = Ola In%a)
as a tends to infinity; so, the ratio

Cy*@ / C M) = Oin%a) asat o
indicates the gap in our knowledge of the complexity of nonlinear Runge-Kutta
methods.

Finally, we wish to compare the complexities of NRK methods, Taylor series
methods, and linear Runge-Kutta ("LRK") methods. We write CU,NRK" CU,LRK.' CU,T.
for CU* in the class of NRK methods, LRK methods, and Taylor series methods; other
notations (CL.LRK" CLri") elc) are formed in an analogous manner. Finaly, i

f, g : R** 2 R** satisty lim gpo f(a) = lim g1 g(a) = 4, we write

PR o SR
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(3.18) t<g itf Ha) = olgla)) as @t o ;
we say f is asymptotically less than g. (See Section 5 of Werschulz (76a}) We then
have

Theorem 3.5:

(1) Cynre* < Crirc*-
) Cyy* < Cyppg if the cost of evaluating the k'P derivative of v is

bounded for all k.

Proof: Immediate from (3.20) and (4.14) of Werschulz [76a] and (3.17). §

As a corollary we see that Cypi* < Ciry*, 50 that the best NRK method known
is better than the best LRK method possible. Moreover, if the derivatives of v are
easy to evaluate, the best Taylor series method known is better than the best NRK
method known. However, if the cost of evaluating the kth derivative of v increases

faster than O(In k) as k T oo, then it is easy to show that the opposite will be true.
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Appendix: Order-Convergence of a Basic Sequence

In this Appendix, we describe a subclass of a class of iterative methods for the
solution of scalar nonlinear equations. This subclass will then bo used to generate an
order-convergent basic sequence ®gpy of nonlinear Runge-Kutta methods.

Lemma A.l: Let F: DR -+ R have a simple zero p, and suppose that F is
analytic at . Pick k, m € Z** with m + 1 2 k. Then there is a sequence
¥im = (Fkmn ¢ N € Z**} of stationary multipoint methods without memory such that
the following hold:

(1.) The method ¥y, uses the information

Remn®) = (Flxg), -, FMixg), F®Xy)), ..., FRAy 0}
(the points y; , .. , y, being suitably chosen) to compute a new
approximation x| to | from a given approximation xq by setting
X1 = ¥kmn®0’ -
(2) There exists a B > 0 and an hg > 0 such that if |xg - tl s hg , then
kg -2l < Blxg-t® forallneZ*,
where
(A.1) p=mnme2n+1,2men+l) .

Before proving the Lemma, we describe how the method $y,,, computes an

improved approximation x| from the old approximation xg .
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Algorithm for computing x; = $¥xpn(xo)

(1) Letd := [F(xg)/F/xq).

(2) Let z; be an approximate zero of

px) := !::o x - xo) Fidxg) £ it
uﬂsfying
(A2)  z; = xg+O0B) and Ipyzp s (A O,
where A, is independent of n.
(3) Let
y; = %o *+a@jn (2] -%9) (1sisn),
where
@, = (L+x,)/2
and xjp, > .. > X, are the zeros of the Jacobi polynomial
Pa(x) = p'(‘k-l. m+1-K)y)
(see Szegd [59)).

(4) Let p,,; be the polynomial of degree at most m + n that interpolstes the
information Ry \n(F), and let x; be an approximate zero of ppn,1
satisfying

(A3) X{ = %9 +O0(B) and [py.(x)l s (A 8P,
where A, is independent of n and p is given by (A.1).

Here we use the notation of Brent [74] Clearly, $ymn € C/(k, m, n), the only
difference being that conditions (A.2) and (A.3) replace (2.2) and (2.4) of Brent [74] It
is easy to see that (A.2) and (A.3) may be realized by using [loga(m+1)] - 1 end
[loga(p/(m+1))] iterations of Newton’s method, with the respective starting

approximations of xq - F(xg) / F/(xg) and 2; .
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Proof of Lemma AJl: Let x;/ be the exact zero of p,,; neer xo. We then find
w that there is a § between x;’ and z; such that }
| (AQ)  JFx M S Ippeg(2y) = F@PI* IPReq (B = FUBN Iny’ - 2] . | ‘ i ;
Using (A.3), the analyticity of F, and standard techniques of interpolation theory {
(Traub [64]), it is easy to show that (2.9) and (2.10) of Brent [74] may be rewritten as f

Prs1(X) - FOOl S (Aq HM*N*] and
t (AB) - ’ i
IPhe100) = FI0)| S (Aq M |

for Ix - xg| < 48. (Here all constants A, will be independent of n.) Similarly, we find

that
Wy’ -0 S (Ag O™ and 2y - pl s (Ag D™,
so that the triangle inequality gives
(A.6) Iy’ -2y S (Ap O™

Using (A.4), (A5), and (A.6), we see that
Iy N S IPpag(zy) - Fizy)l + (Ag BZmensl
S IPpag(2y) - Fylzgl « Falz)l + (g H2mn+l

(A7)

where

Fy(x) o= z;:;',z" (x - xg) Fidixg) /it and  Fp(x) = F(x)=Fylx) .

Clearly [Fo(x)] S (Ag 8Y™*2n*1 0 that (A7) becomes

(A8) Foq N S Ippag2y) - Fylzgl + (Ago 8 .
: |
'- ! As in Brent [74], we now write
i Pre1(®) = ri(x) +rax),

where r; (i = 1, 2) is the polynomial of degree at most m + n satisfying
r{xg) = Filikxg) (0 sjsm

My = F®hy) sjsm.

4
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If we lot
Px) = ry(x + xg) - Fy(x + xg),
and write ¢ := 2; - xg (in this Appendix only), we find that
Pid0) =0 (0sism and P*g o) =0 (1sism) .
We may easily siter the proof of Lemma 4.3 in Brent [74] to show that 4
ri(zg) -Fy(zy) = Pe) = 0 .
Thus (A.8) becomes
(A.9) IFxg ) s Ira(zg) + (Agg 8.

To bound the remaining term, let us write

ra) = Til; iy (x - %M,
recalling that r has a zero of multiplicity m at xo . Using the notation of Stewart (73],
we see that the nonzero coefficients of ro are given by the solution of the linear
system
Wy =¢ ,
where
wjj = af;l (tsijsn),
% = MG emt/Gem-K)E (LSjsn), and

m-k+1

Y = o Fz(”(yi) / LS (Lsisn) .

Since WY is a Vandermonde matrix, we find that the entries of U = W™! are given by
vj = 'jn_('”"" ®n-in-1, / Tepj (@jn = aen) »
where
“un-1,j " 2 %0~ G0
the sum being taken over all multi-indices p; .. p, not including j (Gregory and

Karney [69]). Since there are fewer than 2" summands, each of which lies in [0, 1],

we see that ¢, \\_, ; < 2", implying that
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Mi] s " ‘jn / nr” (.]I\ 4 ."‘) .

So we have
(A.10) W=y o
S n 2% max 1gign | % FMy) / [ G ey 1,
where

Gpx) = Gpm+ L,me2-Kx) = O} (x-ap)
(see Abramowitz and Stegun [64)).

Now it is clear that
max ) <i<n 1 /a;':"k = 1 /l::k A
By Theorem 8.9.1 of Szegd [59), we may show that
e 2 AppnZ;

using this result and (2255.2) of Abramowitz and Stegun [64), we find that

max | gicn [cr""k G,,'(cj")]'1

s A 12 ﬂz(m-k) (

By the symmetry relation (4.1.3) of Szeg8 [59), we may assume that 0 s x;,, < 1. Using

(Al1)

m+2n+1]

i ) maX | gicn IF’,,,'()(j“)l"l ’

Theorem 8.9.1 of Szegh [59]), we may show that
Pa/ejpllL s (Aya)",
and so (A.10), (A.11), the definition of F5, and the above imply that
' Il S (A4 sym+2n+l :
yielding the resuit
Irptzg)l s z;‘_1 am M < onmax e Il S (Agg O

So (A.9) becomes

F(ll"' s (Als .

By Taylor’s Theorem, this implies



by’ ~pl s (A8 .
The desired result then follows from (A.3) and from (2.5) of Brent [74] [
We now describe the besic sequence #gpy . The methods in this basic sequence
are given by
eilxg s V) = wvixg),
92(xg , h) = vixg + h vixg) /12,
and for p 2 2,
vpxo s h) = -l [¥1,1,0-2%0" - %0l
with "l,l p-2 applied to the function F given by (2.8) and the approximation x; to x;’
being given by an appropriate number of iterations of Newton’s method (as described
above).
Theorem A.l: The basic sequence ®gpy is order-convergent with respect to the

global error. Moreover, the number of stages s(p) required by vp ¢ ®grk i given by

p ifps2
s(p) =
p-1 ifp>2

Proof: We use the notation of Lemma A.1, writing 2(h) for the computed p""-
order approximation x; to x(h) and p,,1( ", xq) for the polynomial p,,y . The result
of Lemma A.l is that

h™! lz2h) - x(h)] s B P,
the desired result for a single unit step. To prove the global result, we must consider
the Lipschitz constants for ®gpx.

We implicitly differentiate the result p,,;(x;’, xg) 8 O to find

31 wplxg s h) = -h"1 Qpaplng’ %o) + spixg)

where

Qne1(*1’ X0) = 1 482 Pryyx1y x0) / 9 Pn+1(X1% X0)




T

and

' apxg) = h™) (@/dug) [xy - ;) -
It is easy to see that xy and x;/ are analytic functions of xq . Since their difference
tends to zero uniformly on the domain of v as p T ® , it follows that

lim pteo 'p("o) =0.
We claim that
Qns1(x1/s%p) = Ohinn) as nto ,

uniformly in xq . To see this, note that we may write the interpolation polynomial p, .1
in terms of Jacobi polynomial P, , finding that

Pnei®xg) = (-1)"(h/2) ﬁ(:) Paldt & hvixg) B3P fkn =
where

o) = 2(x-xg)/[hvixg)] - 1

and

Ten = [2 (1 + %) vlyy) P! 27 4+ 1D PR /(2 = xyq) ot

$(x)
=]
Now
31 Pratl@phs%g) = LVPE)) [ vixg) + (Lep ] 80kn) Lynlty),
where
b1 = b(xy),
Lun(®) = Pp(x) / [Py (xyp) (x = )], and
gt) = 1/[(1 +)vlxg+(1+)hvixg)/2)] .
By (8.21.10) of Szegh [59), the first term in the expression fov; 91 Ppa1lxy’ s Xg) goes
to zero as n T @ . A minor modification of the proot of Theorem 14.4 of Szegd [59)
shows that the sum in the remaining term tends to g(p(x(h))) as n T . So

31 Prer(xy’ 1 %) ~ vix(h)™! esnt o .

) it i i S s i S e ol
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1 Using Lemma A.1 of the Appendix in Werschulz [76a] and techniques similer to those
yielding the above estimate, we find :
92 Pns1lx1’ s Xg) = Othinn) - vix(h)! asntow .

This gives the estimate claimed for Q.. 1(x;’, xg) .

So the Lipschitz constant for vp ¢ ¥R Grows as the logarithm of p. By

Proposition 4.3 of Werschulz [76b], #gp is order-convergent. [l

B —
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